chord/vendor/github.com/go-json-experiment/json/arshal.go
2025-03-15 20:42:37 -04:00

569 lines
25 KiB
Go

// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package json
import (
"bytes"
"encoding"
"io"
"reflect"
"slices"
"strings"
"sync"
"time"
"github.com/go-json-experiment/json/internal"
"github.com/go-json-experiment/json/internal/jsonflags"
"github.com/go-json-experiment/json/internal/jsonopts"
"github.com/go-json-experiment/json/jsontext"
)
// Reference encoding and time packages to assist pkgsite
// in being able to hotlink references to those packages.
var (
_ encoding.TextMarshaler
_ encoding.TextAppender
_ encoding.TextUnmarshaler
_ time.Time
_ time.Duration
)
// export exposes internal functionality of the "jsontext" package.
var export = jsontext.Internal.Export(&internal.AllowInternalUse)
// Marshal serializes a Go value as a []byte according to the provided
// marshal and encode options (while ignoring unmarshal or decode options).
// It does not terminate the output with a newline.
//
// Type-specific marshal functions and methods take precedence
// over the default representation of a value.
// Functions or methods that operate on *T are only called when encoding
// a value of type T (by taking its address) or a non-nil value of *T.
// Marshal ensures that a value is always addressable
// (by boxing it on the heap if necessary) so that
// these functions and methods can be consistently called. For performance,
// it is recommended that Marshal be passed a non-nil pointer to the value.
//
// The input value is encoded as JSON according the following rules:
//
// - If any type-specific functions in a [WithMarshalers] option match
// the value type, then those functions are called to encode the value.
// If all applicable functions return [SkipFunc],
// then the value is encoded according to subsequent rules.
//
// - If the value type implements [MarshalerTo],
// then the MarshalJSONTo method is called to encode the value.
//
// - If the value type implements [Marshaler],
// then the MarshalJSON method is called to encode the value.
//
// - If the value type implements [encoding.TextAppender],
// then the AppendText method is called to encode the value and
// subsequently encode its result as a JSON string.
//
// - If the value type implements [encoding.TextMarshaler],
// then the MarshalText method is called to encode the value and
// subsequently encode its result as a JSON string.
//
// - Otherwise, the value is encoded according to the value's type
// as described in detail below.
//
// Most Go types have a default JSON representation.
// Certain types support specialized formatting according to
// a format flag optionally specified in the Go struct tag
// for the struct field that contains the current value
// (see the “JSON Representation of Go structs” section for more details).
//
// The representation of each type is as follows:
//
// - A Go boolean is encoded as a JSON boolean (e.g., true or false).
// It does not support any custom format flags.
//
// - A Go string is encoded as a JSON string.
// It does not support any custom format flags.
//
// - A Go []byte or [N]byte is encoded as a JSON string containing
// the binary value encoded using RFC 4648.
// If the format is "base64" or unspecified, then this uses RFC 4648, section 4.
// If the format is "base64url", then this uses RFC 4648, section 5.
// If the format is "base32", then this uses RFC 4648, section 6.
// If the format is "base32hex", then this uses RFC 4648, section 7.
// If the format is "base16" or "hex", then this uses RFC 4648, section 8.
// If the format is "array", then the bytes value is encoded as a JSON array
// where each byte is recursively JSON-encoded as each JSON array element.
//
// - A Go integer is encoded as a JSON number without fractions or exponents.
// If [StringifyNumbers] is specified or encoding a JSON object name,
// then the JSON number is encoded within a JSON string.
// It does not support any custom format flags.
//
// - A Go float is encoded as a JSON number.
// If [StringifyNumbers] is specified or encoding a JSON object name,
// then the JSON number is encoded within a JSON string.
// If the format is "nonfinite", then NaN, +Inf, and -Inf are encoded as
// the JSON strings "NaN", "Infinity", and "-Infinity", respectively.
// Otherwise, the presence of non-finite numbers results in a [SemanticError].
//
// - A Go map is encoded as a JSON object, where each Go map key and value
// is recursively encoded as a name and value pair in the JSON object.
// The Go map key must encode as a JSON string, otherwise this results
// in a [SemanticError]. The Go map is traversed in a non-deterministic order.
// For deterministic encoding, consider using the [Deterministic] option.
// If the format is "emitnull", then a nil map is encoded as a JSON null.
// If the format is "emitempty", then a nil map is encoded as an empty JSON object,
// regardless of whether [FormatNilMapAsNull] is specified.
// Otherwise by default, a nil map is encoded as an empty JSON object.
//
// - A Go struct is encoded as a JSON object.
// See the “JSON Representation of Go structs” section
// in the package-level documentation for more details.
//
// - A Go slice is encoded as a JSON array, where each Go slice element
// is recursively JSON-encoded as the elements of the JSON array.
// If the format is "emitnull", then a nil slice is encoded as a JSON null.
// If the format is "emitempty", then a nil slice is encoded as an empty JSON array,
// regardless of whether [FormatNilSliceAsNull] is specified.
// Otherwise by default, a nil slice is encoded as an empty JSON array.
//
// - A Go array is encoded as a JSON array, where each Go array element
// is recursively JSON-encoded as the elements of the JSON array.
// The JSON array length is always identical to the Go array length.
// It does not support any custom format flags.
//
// - A Go pointer is encoded as a JSON null if nil, otherwise it is
// the recursively JSON-encoded representation of the underlying value.
// Format flags are forwarded to the encoding of the underlying value.
//
// - A Go interface is encoded as a JSON null if nil, otherwise it is
// the recursively JSON-encoded representation of the underlying value.
// It does not support any custom format flags.
//
// - A Go [time.Time] is encoded as a JSON string containing the timestamp
// formatted in RFC 3339 with nanosecond precision.
// If the format matches one of the format constants declared
// in the time package (e.g., RFC1123), then that format is used.
// If the format is "unix", "unixmilli", "unixmicro", or "unixnano",
// then the timestamp is encoded as a JSON number of the number of seconds
// (or milliseconds, microseconds, or nanoseconds) since the Unix epoch,
// which is January 1st, 1970 at 00:00:00 UTC.
// Otherwise, the format is used as-is with [time.Time.Format] if non-empty.
//
// - A Go [time.Duration] is encoded as a JSON string containing the duration
// formatted according to [time.Duration.String].
// If the format is "sec", "milli", "micro", or "nano",
// then the duration is encoded as a JSON number of the number of seconds
// (or milliseconds, microseconds, or nanoseconds) in the duration.
// If the format is "units", it uses [time.Duration.String].
//
// - All other Go types (e.g., complex numbers, channels, and functions)
// have no default representation and result in a [SemanticError].
//
// JSON cannot represent cyclic data structures and Marshal does not handle them.
// Passing cyclic structures will result in an error.
func Marshal(in any, opts ...Options) (out []byte, err error) {
enc := export.GetBufferedEncoder(opts...)
defer export.PutBufferedEncoder(enc)
xe := export.Encoder(enc)
xe.Flags.Set(jsonflags.OmitTopLevelNewline | 1)
err = marshalEncode(enc, in, &xe.Struct)
if err != nil && xe.Flags.Get(jsonflags.ReportErrorsWithLegacySemantics) {
return nil, internal.TransformMarshalError(in, err)
}
return bytes.Clone(xe.Buf), err
}
// MarshalWrite serializes a Go value into an [io.Writer] according to the provided
// marshal and encode options (while ignoring unmarshal or decode options).
// It does not terminate the output with a newline.
// See [Marshal] for details about the conversion of a Go value into JSON.
func MarshalWrite(out io.Writer, in any, opts ...Options) (err error) {
enc := export.GetStreamingEncoder(out, opts...)
defer export.PutStreamingEncoder(enc)
xe := export.Encoder(enc)
xe.Flags.Set(jsonflags.OmitTopLevelNewline | 1)
err = marshalEncode(enc, in, &xe.Struct)
if err != nil && xe.Flags.Get(jsonflags.ReportErrorsWithLegacySemantics) {
return internal.TransformMarshalError(in, err)
}
return err
}
// MarshalEncode serializes a Go value into an [jsontext.Encoder] according to
// the provided marshal options (while ignoring unmarshal, encode, or decode options).
// Any marshal-relevant options already specified on the [jsontext.Encoder]
// take lower precedence than the set of options provided by the caller.
// Unlike [Marshal] and [MarshalWrite], encode options are ignored because
// they must have already been specified on the provided [jsontext.Encoder].
//
// See [Marshal] for details about the conversion of a Go value into JSON.
func MarshalEncode(out *jsontext.Encoder, in any, opts ...Options) (err error) {
xe := export.Encoder(out)
if len(opts) > 0 {
optsOriginal := xe.Struct
defer func() { xe.Struct = optsOriginal }()
xe.Struct.JoinWithoutCoderOptions(opts...)
}
err = marshalEncode(out, in, &xe.Struct)
if err != nil && xe.Flags.Get(jsonflags.ReportErrorsWithLegacySemantics) {
return internal.TransformMarshalError(in, err)
}
return err
}
func marshalEncode(out *jsontext.Encoder, in any, mo *jsonopts.Struct) (err error) {
v := reflect.ValueOf(in)
if !v.IsValid() || (v.Kind() == reflect.Pointer && v.IsNil()) {
return out.WriteToken(jsontext.Null)
}
// Shallow copy non-pointer values to obtain an addressable value.
// It is beneficial to performance to always pass pointers to avoid this.
forceAddr := v.Kind() != reflect.Pointer
if forceAddr {
v2 := reflect.New(v.Type())
v2.Elem().Set(v)
v = v2
}
va := addressableValue{v.Elem(), forceAddr} // dereferenced pointer is always addressable
t := va.Type()
// Lookup and call the marshal function for this type.
marshal := lookupArshaler(t).marshal
if mo.Marshalers != nil {
marshal, _ = mo.Marshalers.(*Marshalers).lookup(marshal, t)
}
if err := marshal(out, va, mo); err != nil {
if !mo.Flags.Get(jsonflags.AllowDuplicateNames) {
export.Encoder(out).Tokens.InvalidateDisabledNamespaces()
}
return err
}
return nil
}
// Unmarshal decodes a []byte input into a Go value according to the provided
// unmarshal and decode options (while ignoring marshal or encode options).
// The input must be a single JSON value with optional whitespace interspersed.
// The output must be a non-nil pointer.
//
// Type-specific unmarshal functions and methods take precedence
// over the default representation of a value.
// Functions or methods that operate on *T are only called when decoding
// a value of type T (by taking its address) or a non-nil value of *T.
// Unmarshal ensures that a value is always addressable
// (by boxing it on the heap if necessary) so that
// these functions and methods can be consistently called.
//
// The input is decoded into the output according the following rules:
//
// - If any type-specific functions in a [WithUnmarshalers] option match
// the value type, then those functions are called to decode the JSON
// value. If all applicable functions return [SkipFunc],
// then the input is decoded according to subsequent rules.
//
// - If the value type implements [UnmarshalerFrom],
// then the UnmarshalJSONFrom method is called to decode the JSON value.
//
// - If the value type implements [Unmarshaler],
// then the UnmarshalJSON method is called to decode the JSON value.
//
// - If the value type implements [encoding.TextUnmarshaler],
// then the input is decoded as a JSON string and
// the UnmarshalText method is called with the decoded string value.
// This fails with a [SemanticError] if the input is not a JSON string.
//
// - Otherwise, the JSON value is decoded according to the value's type
// as described in detail below.
//
// Most Go types have a default JSON representation.
// Certain types support specialized formatting according to
// a format flag optionally specified in the Go struct tag
// for the struct field that contains the current value
// (see the “JSON Representation of Go structs” section for more details).
// A JSON null may be decoded into every supported Go value where
// it is equivalent to storing the zero value of the Go value.
// If the input JSON kind is not handled by the current Go value type,
// then this fails with a [SemanticError]. Unless otherwise specified,
// the decoded value replaces any pre-existing value.
//
// The representation of each type is as follows:
//
// - A Go boolean is decoded from a JSON boolean (e.g., true or false).
// It does not support any custom format flags.
//
// - A Go string is decoded from a JSON string.
// It does not support any custom format flags.
//
// - A Go []byte or [N]byte is decoded from a JSON string
// containing the binary value encoded using RFC 4648.
// If the format is "base64" or unspecified, then this uses RFC 4648, section 4.
// If the format is "base64url", then this uses RFC 4648, section 5.
// If the format is "base32", then this uses RFC 4648, section 6.
// If the format is "base32hex", then this uses RFC 4648, section 7.
// If the format is "base16" or "hex", then this uses RFC 4648, section 8.
// If the format is "array", then the Go slice or array is decoded from a
// JSON array where each JSON element is recursively decoded for each byte.
// When decoding into a non-nil []byte, the slice length is reset to zero
// and the decoded input is appended to it.
// When decoding into a [N]byte, the input must decode to exactly N bytes,
// otherwise it fails with a [SemanticError].
//
// - A Go integer is decoded from a JSON number.
// It must be decoded from a JSON string containing a JSON number
// if [StringifyNumbers] is specified or decoding a JSON object name.
// It fails with a [SemanticError] if the JSON number
// has a fractional or exponent component.
// It also fails if it overflows the representation of the Go integer type.
// It does not support any custom format flags.
//
// - A Go float is decoded from a JSON number.
// It must be decoded from a JSON string containing a JSON number
// if [StringifyNumbers] is specified or decoding a JSON object name.
// It fails if it overflows the representation of the Go float type.
// If the format is "nonfinite", then the JSON strings
// "NaN", "Infinity", and "-Infinity" are decoded as NaN, +Inf, and -Inf.
// Otherwise, the presence of such strings results in a [SemanticError].
//
// - A Go map is decoded from a JSON object,
// where each JSON object name and value pair is recursively decoded
// as the Go map key and value. Maps are not cleared.
// If the Go map is nil, then a new map is allocated to decode into.
// If the decoded key matches an existing Go map entry, the entry value
// is reused by decoding the JSON object value into it.
// The formats "emitnull" and "emitempty" have no effect when decoding.
//
// - A Go struct is decoded from a JSON object.
// See the “JSON Representation of Go structs” section
// in the package-level documentation for more details.
//
// - A Go slice is decoded from a JSON array, where each JSON element
// is recursively decoded and appended to the Go slice.
// Before appending into a Go slice, a new slice is allocated if it is nil,
// otherwise the slice length is reset to zero.
// The formats "emitnull" and "emitempty" have no effect when decoding.
//
// - A Go array is decoded from a JSON array, where each JSON array element
// is recursively decoded as each corresponding Go array element.
// Each Go array element is zeroed before decoding into it.
// It fails with a [SemanticError] if the JSON array does not contain
// the exact same number of elements as the Go array.
// It does not support any custom format flags.
//
// - A Go pointer is decoded based on the JSON kind and underlying Go type.
// If the input is a JSON null, then this stores a nil pointer.
// Otherwise, it allocates a new underlying value if the pointer is nil,
// and recursively JSON decodes into the underlying value.
// Format flags are forwarded to the decoding of the underlying type.
//
// - A Go interface is decoded based on the JSON kind and underlying Go type.
// If the input is a JSON null, then this stores a nil interface value.
// Otherwise, a nil interface value of an empty interface type is initialized
// with a zero Go bool, string, float64, map[string]any, or []any if the
// input is a JSON boolean, string, number, object, or array, respectively.
// If the interface value is still nil, then this fails with a [SemanticError]
// since decoding could not determine an appropriate Go type to decode into.
// For example, unmarshaling into a nil io.Reader fails since
// there is no concrete type to populate the interface value with.
// Otherwise an underlying value exists and it recursively decodes
// the JSON input into it. It does not support any custom format flags.
//
// - A Go [time.Time] is decoded from a JSON string containing the time
// formatted in RFC 3339 with nanosecond precision.
// If the format matches one of the format constants declared in
// the time package (e.g., RFC1123), then that format is used for parsing.
// If the format is "unix", "unixmilli", "unixmicro", or "unixnano",
// then the timestamp is decoded from a JSON number of the number of seconds
// (or milliseconds, microseconds, or nanoseconds) since the Unix epoch,
// which is January 1st, 1970 at 00:00:00 UTC.
// Otherwise, the format is used as-is with [time.Time.Parse] if non-empty.
//
// - A Go [time.Duration] is decoded from a JSON string by
// passing the decoded string to [time.ParseDuration].
// If the format is "sec", "milli", "micro", or "nano",
// then the duration is decoded from a JSON number of the number of seconds
// (or milliseconds, microseconds, or nanoseconds) in the duration.
// If the format is "units", it uses [time.ParseDuration].
//
// - All other Go types (e.g., complex numbers, channels, and functions)
// have no default representation and result in a [SemanticError].
//
// In general, unmarshaling follows merge semantics (similar to RFC 7396)
// where the decoded Go value replaces the destination value
// for any JSON kind other than an object.
// For JSON objects, the input object is merged into the destination value
// where matching object members recursively apply merge semantics.
func Unmarshal(in []byte, out any, opts ...Options) (err error) {
dec := export.GetBufferedDecoder(in, opts...)
defer export.PutBufferedDecoder(dec)
xd := export.Decoder(dec)
err = unmarshalFull(dec, out, &xd.Struct)
if err != nil && xd.Flags.Get(jsonflags.ReportErrorsWithLegacySemantics) {
return internal.TransformUnmarshalError(out, err)
}
return err
}
// UnmarshalRead deserializes a Go value from an [io.Reader] according to the
// provided unmarshal and decode options (while ignoring marshal or encode options).
// The input must be a single JSON value with optional whitespace interspersed.
// It consumes the entirety of [io.Reader] until [io.EOF] is encountered,
// without reporting an error for EOF. The output must be a non-nil pointer.
// See [Unmarshal] for details about the conversion of JSON into a Go value.
func UnmarshalRead(in io.Reader, out any, opts ...Options) (err error) {
dec := export.GetStreamingDecoder(in, opts...)
defer export.PutStreamingDecoder(dec)
xd := export.Decoder(dec)
err = unmarshalFull(dec, out, &xd.Struct)
if err != nil && xd.Flags.Get(jsonflags.ReportErrorsWithLegacySemantics) {
return internal.TransformUnmarshalError(out, err)
}
return err
}
func unmarshalFull(in *jsontext.Decoder, out any, uo *jsonopts.Struct) error {
switch err := unmarshalDecode(in, out, uo); err {
case nil:
return export.Decoder(in).CheckEOF()
case io.EOF:
return io.ErrUnexpectedEOF
default:
return err
}
}
// UnmarshalDecode deserializes a Go value from a [jsontext.Decoder] according to
// the provided unmarshal options (while ignoring marshal, encode, or decode options).
// Any unmarshal options already specified on the [jsontext.Decoder]
// take lower precedence than the set of options provided by the caller.
// Unlike [Unmarshal] and [UnmarshalRead], decode options are ignored because
// they must have already been specified on the provided [jsontext.Decoder].
//
// The input may be a stream of one or more JSON values,
// where this only unmarshals the next JSON value in the stream.
// The output must be a non-nil pointer.
// See [Unmarshal] for details about the conversion of JSON into a Go value.
func UnmarshalDecode(in *jsontext.Decoder, out any, opts ...Options) (err error) {
xd := export.Decoder(in)
if len(opts) > 0 {
optsOriginal := xd.Struct
defer func() { xd.Struct = optsOriginal }()
xd.Struct.JoinWithoutCoderOptions(opts...)
}
err = unmarshalDecode(in, out, &xd.Struct)
if err != nil && xd.Flags.Get(jsonflags.ReportErrorsWithLegacySemantics) {
return internal.TransformUnmarshalError(out, err)
}
return err
}
func unmarshalDecode(in *jsontext.Decoder, out any, uo *jsonopts.Struct) (err error) {
v := reflect.ValueOf(out)
if v.Kind() != reflect.Pointer || v.IsNil() {
return &SemanticError{action: "unmarshal", GoType: reflect.TypeOf(out), Err: internal.ErrNonNilReference}
}
va := addressableValue{v.Elem(), false} // dereferenced pointer is always addressable
t := va.Type()
// In legacy semantics, the entirety of the next JSON value
// was validated before attempting to unmarshal it.
if uo.Flags.Get(jsonflags.ReportErrorsWithLegacySemantics) {
if err := export.Decoder(in).CheckNextValue(); err != nil {
return err
}
}
// Lookup and call the unmarshal function for this type.
unmarshal := lookupArshaler(t).unmarshal
if uo.Unmarshalers != nil {
unmarshal, _ = uo.Unmarshalers.(*Unmarshalers).lookup(unmarshal, t)
}
if err := unmarshal(in, va, uo); err != nil {
if !uo.Flags.Get(jsonflags.AllowDuplicateNames) {
export.Decoder(in).Tokens.InvalidateDisabledNamespaces()
}
return err
}
return nil
}
// addressableValue is a reflect.Value that is guaranteed to be addressable
// such that calling the Addr and Set methods do not panic.
//
// There is no compile magic that enforces this property,
// but rather the need to construct this type makes it easier to examine each
// construction site to ensure that this property is upheld.
type addressableValue struct {
reflect.Value
// forcedAddr reports whether this value is addressable
// only through the use of [newAddressableValue].
// This is only used for [jsonflags.CallMethodsWithLegacySemantics].
forcedAddr bool
}
// newAddressableValue constructs a new addressable value of type t.
func newAddressableValue(t reflect.Type) addressableValue {
return addressableValue{reflect.New(t).Elem(), true}
}
// TODO: Remove *jsonopts.Struct argument from [marshaler] and [unmarshaler].
// This can be directly accessed on the encoder or decoder.
// All marshal and unmarshal behavior is implemented using these signatures.
// The *jsonopts.Struct argument is guaranteed to identical to or at least
// a strict super-set of the options in Encoder.Struct or Decoder.Struct.
// It is identical for Marshal, Unmarshal, MarshalWrite, and UnmarshalRead.
// It is a super-set for MarshalEncode and UnmarshalDecode.
type (
marshaler = func(*jsontext.Encoder, addressableValue, *jsonopts.Struct) error
unmarshaler = func(*jsontext.Decoder, addressableValue, *jsonopts.Struct) error
)
type arshaler struct {
marshal marshaler
unmarshal unmarshaler
nonDefault bool
}
var lookupArshalerCache sync.Map // map[reflect.Type]*arshaler
func lookupArshaler(t reflect.Type) *arshaler {
if v, ok := lookupArshalerCache.Load(t); ok {
return v.(*arshaler)
}
fncs := makeDefaultArshaler(t)
fncs = makeMethodArshaler(fncs, t)
fncs = makeTimeArshaler(fncs, t)
// Use the last stored so that duplicate arshalers can be garbage collected.
v, _ := lookupArshalerCache.LoadOrStore(t, fncs)
return v.(*arshaler)
}
var stringsPools = &sync.Pool{New: func() any { return new(stringSlice) }}
type stringSlice []string
// getStrings returns a non-nil pointer to a slice with length n.
func getStrings(n int) *stringSlice {
s := stringsPools.Get().(*stringSlice)
if cap(*s) < n {
*s = make([]string, n)
}
*s = (*s)[:n]
return s
}
func putStrings(s *stringSlice) {
if cap(*s) > 1<<10 {
*s = nil // avoid pinning arbitrarily large amounts of memory
}
stringsPools.Put(s)
}
func (ss *stringSlice) Sort() {
slices.SortFunc(*ss, func(x, y string) int { return strings.Compare(x, y) })
}