171 lines
5.0 KiB
Go
171 lines
5.0 KiB
Go
package chord
|
|
|
|
import (
|
|
"context"
|
|
"errors"
|
|
"fmt"
|
|
"net/netip"
|
|
)
|
|
|
|
// Client represents the communications a Chord node performs.
|
|
type Client interface {
|
|
// FindSuccessor asks s to find the peer that most closely follows a key.
|
|
FindSuccessor(ctx context.Context, s Peer, id ID) (Peer, error)
|
|
// Notify tells s we believe n to be its predecessor.
|
|
Notify(ctx context.Context, n *Node, s Peer) error
|
|
// Neighbors requests a peer's beliefs about its own neighbors.
|
|
Neighbors(ctx context.Context, p Peer) (pred Peer, succ []Peer, err error)
|
|
// Bye tells p that its predecessor or successor is leaving
|
|
// and had the given successor list.
|
|
Bye(ctx context.Context, p, n Peer, succ []Peer) error
|
|
// SayBye tells p to leave the network.
|
|
SayBye(ctx context.Context, p Peer) error
|
|
|
|
// Get asks s for a saved value.
|
|
Get(ctx context.Context, s Peer, id ID) (string, error)
|
|
// Set asks s to save a value.
|
|
Set(ctx context.Context, s Peer, id ID, v string) error
|
|
}
|
|
|
|
// TODO(branden): FindSuccessor should be plural; if we have multiple keys to
|
|
// search, we shouldn't have to do the whole query for all of them, especially
|
|
// considering we can sort by increasing distance from the origin and then do
|
|
// the query in linear time.
|
|
|
|
// FindSuccessor gets the peer that most closely follows a key.
|
|
func Find(ctx context.Context, cl Client, n *Node, id ID) (Peer, error) {
|
|
p, ok := n.Closest(id)
|
|
if ok {
|
|
return p, nil
|
|
}
|
|
p, err := cl.FindSuccessor(ctx, p, id)
|
|
return p, err
|
|
}
|
|
|
|
// TODO(branden): Get and Set should be plural for the same reasons.
|
|
|
|
// Get gets a value in the Chord network.
|
|
func Get(ctx context.Context, cl Client, n *Node, key ID) (string, error) {
|
|
p, err := Find(ctx, cl, n, key)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
return cl.Get(ctx, p, key)
|
|
}
|
|
|
|
// Set saves a value in the Chord network.
|
|
func Set(ctx context.Context, cl Client, n *Node, key ID, val string) error {
|
|
p, err := Find(ctx, cl, n, key)
|
|
if err != nil {
|
|
return fmt.Errorf("couldn't find peer to save key: %w", err)
|
|
}
|
|
return cl.Set(ctx, p, key, val)
|
|
}
|
|
|
|
// Join creates a new node joining an existing Chord network by communicating
|
|
// with any peer already in the network.
|
|
func Join(ctx context.Context, cl Client, addr netip.AddrPort, np Peer) (*Node, error) {
|
|
if !addr.IsValid() {
|
|
return nil, errors.New("chord: cannot join with invalid address")
|
|
}
|
|
if !np.IsValid() {
|
|
return nil, errors.New("chord: invalid peer")
|
|
}
|
|
self := Address(addr)
|
|
p, err := cl.FindSuccessor(ctx, np, self.id)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("couldn't query own successor: %w", err)
|
|
}
|
|
// Talk to the peer to verify connection.
|
|
// We also get replication info this way.
|
|
// TODO(branden): We could just create our node with this succ and stabilize,
|
|
// but the paper doesn't in Figure 6, so we won't.
|
|
_, succ, err := cl.Neighbors(ctx, p)
|
|
if err != nil {
|
|
return nil, fmt.Errorf("joined successor failed: %w", err)
|
|
}
|
|
// Make our successor list by shifting up theirs.
|
|
// TODO(branden): need to be more careful about capacity?
|
|
// we're always at 1 in this project anyway...
|
|
s := make([]Peer, len(succ))
|
|
s[0] = p
|
|
copy(s[1:], succ)
|
|
r := &Node{
|
|
self: self,
|
|
succ: s,
|
|
fingers: make([]Peer, 0, 8*len(ID{})),
|
|
data: make(map[ID]string),
|
|
}
|
|
return r, nil
|
|
}
|
|
|
|
// Leave causes n to exit the network gracefully,
|
|
// handing off its data to its successor.
|
|
func Leave(ctx context.Context, cl Client, n *Node) error {
|
|
pred, succ := n.Neighbors(nil)
|
|
if succ[0].addr == n.self.addr {
|
|
// Last node in the network. No data transfer.
|
|
return nil
|
|
}
|
|
if err := cl.Bye(ctx, succ[0], n.self, succ); err != nil {
|
|
return err
|
|
}
|
|
if pred.IsValid() {
|
|
if err := cl.Bye(ctx, pred, n.self, succ); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
n.mu.Lock()
|
|
defer n.mu.Unlock()
|
|
for k, v := range n.data {
|
|
if err := cl.Set(ctx, succ[0], k, v); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Stabilize recomputes n's successor.
|
|
func Stabilize(ctx context.Context, cl Client, n *Node) error {
|
|
pred, _, err := cl.Neighbors(ctx, n.Successor())
|
|
if err != nil {
|
|
// TODO(zeph): replication
|
|
return fmt.Errorf("acquiring successor neighbors for stabilization: %w", err)
|
|
}
|
|
if pred.IsValid() && contains(n.self.id, n.Successor().id, pred.id) && pred.id != n.Successor().id {
|
|
// Shift in the new successor.
|
|
copy(n.succ[1:], n.succ)
|
|
n.succ[0] = pred
|
|
}
|
|
if err := cl.Notify(ctx, n, n.Successor()); err != nil {
|
|
return fmt.Errorf("notifying successor: %w", err)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Notify informs n that p considers n to be p's successor.
|
|
func Notify(n *Node, np Peer) {
|
|
if !n.pred.IsValid() || contains(n.pred.id, n.self.id, np.id) && np.id != n.self.id {
|
|
n.pred = np
|
|
return
|
|
}
|
|
}
|
|
|
|
// FixFingers recomputes n's finger table.
|
|
func FixFingers(ctx context.Context, cl Client, n *Node) error {
|
|
// TODO(branden): need arithmetic on IDs to do this
|
|
return errors.New("not implemented")
|
|
}
|
|
|
|
// CheckPredecessor checks the health of n's predecessor.
|
|
// Any error is considered a health check failure.
|
|
func CheckPredecessor(ctx context.Context, cl Client, n *Node) {
|
|
if !n.pred.IsValid() {
|
|
return
|
|
}
|
|
_, _, err := cl.Neighbors(ctx, n.pred)
|
|
if err != nil {
|
|
n.pred = Peer{}
|
|
}
|
|
}
|